AUTOMATIC LONGITUDINAL MULTIPLE SCLEROSIS LESION SEGMENTATION: MSmetrix

نویسندگان

  • Saurabh Jain
  • Diana M. Sima
  • Dirk Smeets
چکیده

Accurate and consistent multiple sclerosis (MS) brain lesion segmentation and volumetry could be an added value to MS clinicians. In this paper, MSmetrix is presented, an automatic and reliable method, which uses 3D T1-weighted and FLAIR MR images in a probabilistic model to detect white matter lesions as an outlier with respect to the normal brain, while segmenting the brain tissue into grey matter, white matter and cerebrospinal fluid. The actual lesion segmentation is performed based on prior knowledge about the location (within white matter) and the appearance (hyperintense on FLAIR) of lesions. The randomness in longitudinal lesion segmentation for each subject is reduced by harmonising the trade-off between temporal consistency across time points and segmentation diversity at each time point. The method has been validated on the dataset available from the longitudinal MS lesion segmentation challenge 2015.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Time Point MS Lesion Segmentation in Brain MRI: An Expectation-Maximization Framework

Purpose: Lesion volume is a meaningful measure in multiple sclerosis (MS) prognosis. Manual lesion segmentation for computing volume in a single or multiple time points is time consuming and suffers from intra and inter-observer variability. Methods: In this paper, we present MSmetrix-long: a joint expectation-maximization (EM) framework for two time point white matter (WM) lesion segmentation....

متن کامل

Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images

The location and extent of white matter lesions on magnetic resonance imaging (MRI) are important criteria for diagnosis, follow-up and prognosis of multiple sclerosis (MS). Clinical trials have shown that quantitative values, such as lesion volumes, are meaningful in MS prognosis. Manual lesion delineation for the segmentation of lesions is, however, time-consuming and suffers from observer va...

متن کامل

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...

متن کامل

Reliable measurements of brain atrophy in individual patients with multiple sclerosis

INTRODUCTION As neurodegeneration is recognized as a major contributor to disability in multiple sclerosis (MS), brain atrophy quantification could have a high added value in clinical practice to assess treatment efficacy and disease progression, provided that it has a sufficiently low measurement error to draw meaningful conclusions for an individual patient. METHOD In this paper, we present...

متن کامل

Automated brain volumetrics in multiple sclerosis: a step closer to clinical application

BACKGROUND Whole brain volume (WBV) estimates in patients with multiple sclerosis (MS) correlate more robustly with clinical disability than traditional, lesion-based metrics. Numerous algorithms to measure WBV have been developed over the past two decades. We compare Structural Image Evaluation using Normalisation of Atrophy-Cross-sectional (SIENAX) to NeuroQuant and MSmetrix, for assessment o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015